Video di presentazione del corso: Realizzare laboratori green con il Making e il Coding

Vi segnalo il video ufficiale di presentazione del mio prossimo corso per Tecnica della Scuola che vi ho annunciato negli scorsi giorni: Realizzare laboratori green con il Making e il Coding – Proposte didattiche innovative per la sostenibilità ambientale.

Come richiesto via mail e nei commenti su questo sito, nei prossimi giorni segnalerò una lista di materiali da procurarsi per effettuare le sperimentazioni. Tutti i materiali potranno essere acquistati sui maggiori store online, inoltre per alcuni di essi, si potrà utilizzare il buono docente, per questa possibilità, vi fornirò maggiori dettagli o via mail per chi lo richiederà, oppure durante il corso.

Grazie 🙂

Arduino: water sensor

Per le attività in programma per il corso sui laboratori green, spiegherò come controllare il livello d’acqua in una cisterna utilizzata per l’irrigazione. A livello prototipale svolgerò prima sperimentazioni su singola pianta utilizzando il “water sensor” che potete acquistare per pochi centesimi online. In una fase successiva impiegherò dei sensori di livello che vengono comunemente impiegati in cisterne e controlleremo il riempimento e lo svuotamento della cisterna.

Il “water sensor” misura il livello di conduttività elettrica del liquido, conduttività che sarà funzione della quantità di superficie del sensore immerso.
Nell’acqua ed in generale nei liquidi, il passaggio di corrente è dovuto alla presenza di sali, infatti l’acqua pura non risulta conduttiva.
Le piste parallele di rame presenti sul sensore sono connesse al potenziale positivo e al GND, quando il sensore viene immerso nel liquido viene misurata una differenza di potenziale tra i due poli, d.d.p. che dipenderà dalla quantità di superficie immersa, pertanto al variare della quantità d’acqua varierà il valore di resistenza tra i due potenziali.

Sottolineo che il sensore non è preciso e richiede una taratura iniziale che dipende prevalentemente dall’acqua, inoltre sensori diversi potrebbero fornirvi misure diverse.

Il segnale di uscita del sensore (pin S) verrà inviato su un pin analogico di Arduino e da esso convertito in un valore numerico che oscillerà tra ~ 0 e ~500, pertanto se il sensore non è immerso il valore misurato sarà di circa 0, mentre se sarà totalmente immerso raggiungerà il valore massimo rilevato.

Sul sensore sono presenti 10 piste di rame parallele, connesse in modo alternato, in modo che vi siano 5 piste connesse ad un potenziale alto e 5 piste connesse a GND. E’ presente inoltre un LED che indica quando il sensore viene alimentato.

  • S (Signal): uscita analogica da connettere ad un ingresso analogico di Arduino
  • +Vcc: potenziale positivo dell’alimentazione. Si consiglia di alimentare il sensore con una tensione compresa tra 3,3 V e 5V. Si ricorda che l’uscita analogica del sensore varierà in funzione della tensione di alimentazione del sensore.
  • – : da connettere al GND

Attenzione che il sensore non è progettato per essere completamente immerso, fate in modo che solo le tracce ramate parallele esposte sul PCB vengano a contatto con l’acqua.

Continua a leggere

BBC micro:bit Soil Moisture Sensor

Continuo con la pubblicazione degli strumenti per l’analisi dell’umidità del terreno, questa volta l’idea è quella di realizzare un dispositivo su cui è possibile alloggiare: sonda, micro:bit e batterie.
Il dispositivo è pensato per attività da svolgere con allievi di scuola elementare e media, pertanto ho creato un design interessante per gli allievi più giovani.

Ovviamente bisognerà poi creare un codice opportuno in modo tale che ci sia il minimo consumo di batterie e far si che l’ossidazione dei puntali della sonda non avvenga rapidamente, è opportuno quindi usare chiodi in acciaio inossidabile, nel caso di chiodi in ferro l’ossidazione potrebbe avvenire dopo qualche giorno.
Per questa sonda ho utilizzato chiodi da 80 mm.

Durante il corso:realizzare laboratori green con il Making e il Coding, mostrerò come realizzare il codice e come leggere remotamente da un secondo micro:bit, i dati rilevati dalla sonda.

Se desiderate replicare la struttura seguite il link sul mio profilo Thingiverse da cui potrete scaricare i sorgenti grafici per la stampa 3D.
Sono necessari poco più di due ore di stampa, è essenziale aggiungere i supporti di stampa.

Buono Making green a tutti 🙂

Costruire una sonda di umidità del terreno

Durante il prossimo corso: realizzare laboratori green con il Making e il Coding, utilizzerò diversi sensori per misurare grandezze fisiche. Poiché in questi giorni sono occupato con la preparazione delle sperimentazioni che svolgerò durante il corso, pubblicherò di volta in volta su questo sito indicazioni e suggerimenti sui materiali da utilizzare, in questo modo potrete trovarvi pronti nel svolgere insieme a me le sperimentazioni.

Alcuni sensori possono essere costruiti con materiali che abbiamo in casa, un semplice sensore di umidità del terreno può essere costruito con due chiodi in acciaio. Tecnicamente inserendo i due chiodi nel terreno e connettendoli opportunamente ad un microcontrollore saremo in grado di valutare approssimativamente il livello di umidità del terreno, la modalità di taratura e di lettura verrà mostrata durante il corso.

Per mantenere ordine durante le fasi di sperimentazioni suggerisco due semplicissime soluzioni che permettono di realizzare una sonda di umidità:

  • la prima fa uso di un mammut, una morsettiera elettrica che tipicamente viene utilizzata negli impianti elettrici civili, usata per unire cavi elettrici;
  • la seconda soluzione fa uso di un oggetto stampato in 3D.

Sonda di umidità realizzata con un mammut

L’utilizzo di un mammut permette di vincolare i chiodi. Tra la testa del chiodo e il mammut inseriremo il connettore a coccodrillo.

Modo 1

Questa soluzione potrebbe causare il contatto tra i due terminali che deve essere assolutamente evitato. Potreste procedere isolando con nastro isolante.

Modo 2

Separare i punti di connessione dei due chiodi

Per queste soluzioni ho utilizzato mammut per cavi da 6mm^2 e chiodi di acciaio da 90 mm

Sonda di umidità realizzata con supporto stampato in 3D – Moisture Sensor

In questa soluzione dovrete stampare in 3D un elemento che permette agevolmente di inserire nel terreno la sonda e realizza una separazione elettrica tra i morsetti a coccodrillo connessi ai due chiodi. I due chiodi di acciaio sono lunghi 80 mm

Se desiderate prelevare e stampare il supporto seguite il link.

Durante il corso vedremo come utilizzare la sonda con diversi dispositivi: micro:bit, Arduino, Raspberry Pi e sperimenteremo l’uso di altre tipologie di sonde resistive e successivamente analizzeremo l’uso di sonde capacitive.

Buon Making Green a tutti 🙂

Cardboard RobotArm:bit – Realizzare un robot a basso costo

Condivido con tutti voi uno dei progetti che ho mostrato durante l’ultimo mio corso sulla realizzazione di robot a basso costo: RobotArm:bit, un piccolo braccio robot controllato da BBC micro:bit che può essere stampato in 3D oppure realizzato in cartone. Il robot è pensato per l’utilizzo con allievi della primaria e della secondaria di primo grado.

I sorgenti grafici per la stampa 3D possono essere trovati seguendo il link, mentre per la versione in cartone potete far riferimento al documento: profilo di taglio – RoboArmBit.

Il piccolo braccio robot è costituito da 3 servomotori ed il loro controllo può essere effettuato in diversi modi, utilizzando ad esempio una scheda :move della Kitronik, oppure direttamente con micro:bit ed una batteria da 6V per alimentare i servomotori e il micro:bit, soluzione adottata in questa guida. Si tanga in conto che la soluzione che mostro in questo post prevede la modifica di un cavo micro usb da cui vengono prelevati i cavi positivo e negativo che vengono poi connessi sulla breadboard, in questo modo riusciremo ad alimentare tutta l’elettronica usata.

Il circuito di collegamento è molto semplice, i pin di controllo dei servomotori vengono connessi ai pin: 0, 1, 2 del micro:bit.

Per la costruzione della struttura seguire il video che segue. Tutti gli elementi in cartone sono stati incollati utilizzando della colla a caldo. Una goccia di colla è stata utilizzata per serrare gli alberi di rotazione dei servo alle varie parti del robot.

Nel video allegato i dettagli per la realizzazione della versione in cartone.

Codice di esempio

In allegato il codice di esempio per il controllo del braccio robot, i corsisti riceveranno ulteriori materiali.

Buon Making a tutti 🙂