Archivi tag: alternanza scuola lavoro

PCTO A.S. 2020 – 2021 – SumoBot – lezione 3

In questa lezione mostrerò uno sketch di esempio in cui la velocità, il senso di rotazione e la durata di rotazione vengono passati come parametri alle funzioni che controllano il movimento del robot. Ovviamente potrete modificare e migliorare l’esempio proposto.
Si tenga in conto che questo tipo di controllo, sia per la bassa qualità dei servomotori utilizzati, e sia per la scelta del tipo di motore, non consente una regolazione precisa, ma in ogni caso ci permette di raggiungere gli obiettivi esposti nella lezione 1.

Lo schema di collegamento a cui farò riferimento sarà quello utilizzato nella lezione precedente, che indico di seguito.

L’inizializzazione dei servomotori viene eseguita nella stessa modalità come illustrato nella lezione 2.

Le funzioni principali di orientamento del robot permettono di controllare con discreta precisione:

  • la velocità di rotazione;
  • il senso di rotazione;
  • il tempo di rotazione;

Le funzioni di controllo sono:

antiorarioRobot()
orarioRobot()
stopRobot()

Le tre funzioni al loro interno utilizzano il metodo write() sugli oggetti motoreDx e motoreSx.

Le funzioni prevedono due parametri di ingresso: velocità e durata della rotazione.
Con l’impostazione della velocità impostiamo anche il senso di rotazione. Nel caso di rotazione antioraria il valore dovrà essere compreso tra 90 e 180 ed il valore scelto stabilirà anche la velocità di rotazione.

La funzione antiorarioRobot() accetta due parametri di ingresso:

  • velMaxAntioraria, massima velocità oraria
  • durata, indica la durata della rotazione in millisecondi

in questo caso i valori inseriti per la velocità dovranno essere compresi tra 0 e 90:

void antiorarioRobot(int velMaxAntioraria, int durata) {
  motoreDX.write(velMaxAntioraria);  // Rotazione antioraria del motore DX
  motoreSX.write(velMaxAntioraria);  // Rotazione antioraria del motore SX
  delay(durata);                     // durata: durata della rotazione
}

La funzione orarioRobot() funzionerà in modo simile:

void orarioRobot(int velMaxOraria, int durata) {
  motoreDX.write(velMaxOraria);    // Rotazione oraria del motore DX
  motoreSX.write(velMaxOraria);    // Rotazione oraria del motore SX
  delay(durata);                   // durata: durata della rotazione
}

Come esercizio invito gli studenti a realizzare un’unica funzione di comando che ingloba le due precedenti in grado di realizzare qualsiasi tipo di movimento.

La funzione stopRobot() accetta come unico parametro la durata dello stop.

void stopRobot(int ferma) {
  motoreDX.write(90);   // Ferma il motore DX
  motoreSX.write(90);   // Ferma il motore SX
  delay(ferma);         // Durata dello stop
}

Lo sketch completo è il seguente:

/*
 * Prof. Maffucci Michele
 * SumoRobot
 * Data: 26.01.2021
 * 
 * Sketch 02: rotazione oraria e antioraria continua
 *            con funzioni parametrizzate
 * 
 * Note:
 *          L'orientamento dei motori è fatto 
 *          guardano il robot anteriormente
 *       
 *          180: max velocità in senso antiorario
 *          90 : servomotori fermi
 *          0  : max velocità in senso orario
 *            
 */

// inclusione della libreria servo.h per il controllo dei servomotori
#include <Servo.h>

// Creazione oggetti servo
Servo motoreDX;  // Inizializzazione del servomotore destro
Servo motoreSX;  // Inizializzazione del servomotore sinistro

byte pinDx = 4;     // Inizializza del pin 4 a cui è connesso il pin segnale del servo destro
byte pinSx = 5;     // Inizializza del pin 5 a cui è connesso il pin segnale del servo sinistro

void setup() {

  // attach() consente di definire a quale pin viene connesso il servomotore
  // e lo collega all'oggetto che gestisce il servomotore
  
  motoreDX.attach(pinDx); // pinDx collegato al motore destro
  motoreSX.attach(pinSx); // pinSx collegato al motore sinistro
}

void loop() {
  orarioRobot(30, 250);      // Rotazione in senso orario del robot
  stopRobot(3000);           // Stop rotazione per un tempo fissato (vedere variabile ferma)
  antiorarioRobot(150, 250); // Rotazione in senso antiorario del robot
  stopRobot(3000);           // Stop rotazione per un tempo fissato (vedere variabile ferma)
}

// rotazione del robot in senso antiorario
// velMaxOraria: velocità massima in senso antiorario
// durata: durata della rotazione

void antiorarioRobot(int velMaxAntioraria, int durata) {
  motoreDX.write(velMaxAntioraria);  // Rotazione antioraria del motore DX
  motoreSX.write(velMaxAntioraria);  // Rotazione antioraria del motore SX
  delay(durata);                     // durata: durata della rotazione
}

// rotazione del robot in senso orario
// velMaxOraria: velocità massima in senso orario
// durata: durata della rotazione

void orarioRobot(int velMaxOraria, int durata) {
  motoreDX.write(velMaxOraria);    // Rotazione oraria del motore DX
  motoreSX.write(velMaxOraria);    // Rotazione oraria del motore SX
  delay(durata);                   // durata: durata della rotazione
}

// stop del robot
// ferma: durata dello stop del robot

void stopRobot(int ferma) {
  motoreDX.write(90);   // Ferma il motore DX
  motoreSX.write(90);   // Ferma il motore SX
  delay(ferma);         // Durata dello stop
}

I tempi indicati inseriti nelle funzioni all’interno del loop potranno essere modificati secondo necessità.

Esercizio 01
Elenca le cause che provocano errori nel far ruotare precisamente di un determinato angolo scelto il robot.

Esercizio 02
Utilizzando un filo di connessione e modificando lo sketch precedente siete in grado di realizzare n sistema di START/STOP del robot.

Buon Coding a tutti 🙂

PCTO A.S. 2020 – 2021 – SumoBot – lezione 2

In questa lezione vedremo come collegare e controllare i servomotori a rotazione continua di SumoBot.
Fate riferimento allo schema di collegamento che segue, in cui i servomotori vengono connessi ai pin 4 e 5 della Sensor Shield per Arduino Uno Nano V3, come si nota a fianco di ogni pin è disponibile l’alimentazione, infatti troviamo sempre il positivo, indicato con la lettera V e il GND indicato con la lettera G. Come ribadito nella lezione 1 utilizziamo una Sensor Shield perchè permette rapidamente di realizzare tutti i collegamenti senza la necessità i dover ricorrere ad una breadboard oppure alla saldatura dei cavi.

Per questa lezione vengono indicati solo i collegamenti ai motori, non verranno collegati ne il sensore ad ultrasuoni e ne i sensori ad infrarossi.

Per quanto riguarda l’utilizzo dei servomotori a rotazione continua fare riferimento alla slide: Alfabeto di Arduino – Lezione 6, ma per completezza riporto di seguito la spiegazione adattandola all’utilizzo con SumoBot.

Il servomotore è costituito in genere da tre cavi connessi ad un connettore femmina con passo standard tra i fori di 2,54 mm quindi facilmente utilizzabile con qualsiasi strip che ne permette il collegamento ad esempio su una breadboard oppure ai pin maschio della Sensor Shield che utilizziamo per SumoBot.

I fili di connessione possono assumere colori diversi in funzione della marca del servo.

Pinout del servomotore

  • Filo ROSSO: +V
  • Filo NERO o MARRONE: GND
  • Filo BIANCO o ARANCIO o BIANCO o BLU: Segnale

Nel servomotori adottati per questa esperienza i fili di connessione sono:

  • Filo ROSSO: +V
  • Filo MARRONE: GND
  • Filo ARANCIO: Segnale

Collegamenti

Guardando SumoBot frontalmente, collegheremo il motore di destra al pin 4 e il motore di sinistra al pin 5.

Principio di funzionamento del servomotore a rotazione continua

Notoriamente i servomotori possono effettuare una rotazione che oscilla tipicamente da 0 a 180, esistono inoltre modelli che consentono una rotazione inferiore tra 0 e 120 gradi, questi tipi di servomotori possono essere modificati facendo in modo che possano effettuare una rotazione continua, ovvero tra 0 e 360 gradi, ma in commercio sono disponibili servomotori di diverse dimensioni che funzionano in questa modalità. Nel kit utilizzato per la realizzazione di SumoBot utilizziamo due servomotori FS90R.

Sul servomotore a rotazione continua possiamo controllare da programma il senso di rotazione e in modo non molto preciso anche la velocità.

Il funzionamento di un servomotore a rotazione continua è simile a quella di un motore in corrente continua con la differenza che non necessitano di appositi shield per poter funzionare.
Rispetto ad altri tipi di motori in CC offrono scelte limitate per il controllo della velocità e limitazioni di alimentazione.

L’alimentazione potrà avvenire direttamente Attraverso Arduino o mediante alimentazione esterna. L’alimentazione dei motori di SumoBot avverrà direttamente dalla scheda Arduino.

Caratteristiche tecniche

  • Velocità di funzionamento a 4,8V: 110RPM
  • Velocità di funzionamento a 6V: 130RPM
  • Coppia di stallo a 4,8V: 1.3kg.cm/18.09oz.in
  • Coppia di stallo a 6V: 1.5kg.cm/20.86oz.in
  • Tensione operativa: 4.8-6V
  • Sistema di controllo: Analogico
  • Angolo di rotazione: 360 gradi
  • Impulso richiesto: 900-2100us
  • Materiale ingranaggi: Plastica
  • Dimensioni: 2,32×1,25×2,2 cm
  • Peso: 9g

Programmazione

/*
 * Prof. Maffucci Michele
 * SumoRobot
 * Data: 26.01.2021
 * 
 * Sketch 01: rotazione oraria e antioraria continua
 * 
 * Note:
 *          Per l'orientamento del robot 
 *          guardare SumoBot anteriormente
 *       
 *          180: max velocità in senso antiorario
 *          90 : servomotori fermi
 *          0  : max velocità in senso orario
 *            
 */

// inclusione della libreria servo.h per il controllo dei servomotori
#include <Servo.h>

// Creazione oggetti servo
Servo motoreDX;  // Inizializzazione del servomotore destro
Servo motoreSX;  // Inizializzazione del servomotore sinistro

byte pinDx = 4;     // Inizializza del pin 4 a cui è connesso il pin segnale del servo destro
byte pinSx = 5;     // Inizializza del pin 5 a cui è connesso il pin segnale del servo sinistro
int  durata = 250;  // Durata movimento (orario/antiorario)
int  ferma = 3000;  // Durata dello stop

void setup() {

  // attach() consente di definire a quale pin viene connesso il servomotore
  // e lo collega all'oggetto che gestisce il servomotore
  
  motoreDX.attach(pinDx); // pinDx collegato al motore destro
  motoreSX.attach(pinSx); // pinSxcollega to al motore sinistro
}

void loop() {
  orarioRobot();     // Rotazione in senso orario del robot
  stopRobot();       // Stop rotazione per un tempo fissato (vedere variabile ferma)
  antiorarioRobot(); // Rotazione in senso antiorario del robot
  stopRobot();       // Stop rotazione per un tempo fissato (vedere variabile ferma)
}

// rotazione del robot in senso antiorario
void antiorarioRobot(void) {
  motoreDX.write(150);  // Rotazione oraria del motore DX
  motoreSX.write(150);  // Rotazione antioraria del motore SX
  delay(durata);        // durata: durata della rotazione
}

// rotazione del robot in senso orario
void orarioRobot(void) {
  motoreDX.write(30);    // Rotazione antioraria del motore DX
  motoreSX.write(30);    // Rotazione oraria del motore SX
  delay(durata);         // durata: durata della rotazione
}

// stop del robot
void stopRobot(void) {
  motoreDX.write(90);   // Ferma il motore DX
  motoreSX.write(90);   // Ferma il motore SX
  delay(ferma);         // Durata dello stop
}

Per quanto riguarda il controllo dei servomotori seguire la spiegazione inserita come commento all’interno del codice, ricordo comunque che per controllare i servomotori sono necessarie  4 operazioni:

  1. includere la libreria Servo.h
  2. creazione dell’oggetto Servo. motoreDx e motoreSx saranno i due oggetti su cui opererete
  3. assegnare un nome al pin di controllo del servomotore (filo arancione nello schema)
  4. indicare nel setup il metodo attach() che permette di legare gli oggetti motoreDx e motoreSx ai pin su Arduino nell’esempio 4 e 5 a cui abbiamo assegnato i nomi pinDx e pinSx.

All’interno del codice utilizziamo il metodo write() che per i servomotori a rotazione continua permette il passaggio, all’oggetto motoreDx e motoreSx, la direzione e la velocità di rotazione del motore:

  • passando il valore 0 gradi al metodo write() il servo ruota alla massima velocità in una direzione.
  • passando il valore 90 gradi al metodo write() poniamo il servo in stop (posizione “neutra”)
  • passando il valore 180 gradi al metodo write() il servo di ruotare in senso opposto alla massima velocità.

Nel codice che segue SumoBot ripeterà continuamente una rotazione oraria di 250 millisecondi, si fermerà per 3 secondi e riprenderà la rotazione in senso antiorario per 250 millisecondi.

Per effettuare questa operazione vengono definite 3 funzioni:

  • orarioRobot()
  • stopRobot()
  • antiorarioRobot()

Nel codice si può notare che nella funzione antiorarioRobot() viene passato al metodo write() non il valore 180 che farebbe ruotare il robot alla massima velocità, ma un valore inferiore, nel nostro caso 150, ciò ridurrà la velocità di rotazione.

In  modo analogo accade per la funzione orarioRobot() in cui invece di passare il valore 0 alla metodo write(), che lo farebbe ruotare alla massima velocità in senso orario, passiamo un valore maggiore, 30, che lo farà ruotare ad una velocità inferiore.

La fermata del robot avviene utilizzando la funzione stopRobot() in cui viene passato il valore 90 al metodo write(), ciò fermerà i motori.

Si noti che i motori potranno ruoteranno in un senso o in un altro, oppure potranno essere fermati non solo invocando il metodo write, ma bisognerà sempre inserire un delay() in cui viene specificato per quanto tempo il metodo deve agire.

Esercizio 01

Far compiere a SumoBot rotazioni continue di 90 gradi in senso orario inserendo un intervallo di 3 secondi ad ogni quarto di giro

Esercizio 02

Far compiere a SumoBot una rotazione continua di 360° con intervalli di 3 secondi ad ogni quarto di giro, raggiunti i 360° far cambiare il senso di rotazione ripetendo le fermate di 3 secondi ad ogni quarto di giro.

Esercizio 03

Individuare quanto tempo necessita per far effettuare una rotazione di 45° in senso orario a SumoBot e realizzare un programma che permetta di fare le seguenti operazioni:

  1. rotazione di 45° in senso orario
  2. fermate di 3 secondi
  3. rotazione in senso antiorario di 90°
  4. fermata

Buon Making a tutti 🙂

PCTO A.S. 2020 – 2021 – SumoBot – lezione 1

Lavoro di PCTO a.s. 2020-2021. Anno scolastico difficile, la pandemia non aiuta assolutamente nello sviluppo di attività laboratoriali a scuola e in azienda e a tal proposito ho pensato di rivedere completamente il laboratorio iniziando dalle attività di laboratorio degli studenti del 3′ anno.
Come molti colleghi e studenti sapranno il PCTO (ex alternanza scuola lavoro) svolto al terzo anno consiste nello svolgimento di un’attività che viene integralmente realizzata a scuola in cui viene svolta una simulazione d’impresa, dalla progettazione alla creazione di un prodotto, ma il periodo è complicato e lo svolgimento delle attività avverrà in parte online ed in parte in presenza, online si effettueranno tutte le operazioni progettuali e di documentazione mentre in presenza si assemblerà l’oggetto che dovrà poi essere reso prodotto. Come per gli anni passati per le classi terze propongo un’attività basata su un kit da me progettato che i ragazzi poi dovranno modificare e migliorare sia dal punto di vista meccanico che dal punto di vista elettronico e informatico. Parto da un prodotto progettato in partenza semplicemente perché i tempi, i costi ed il periodo non permettono una progettazione da zero, ma come accade ogni anno molti ragazzi a fine attività rivedono integralmente il progetto riformulando una nuova proposta.


La robotica attrae sempre e prototipare piccoli robot affascina sempre i giovani studenti, pertanto ho modificato la prima versione del SumoRobot disegnato nello scorso anno scolastico, formulando una versione che potesse essere realizzata con semplicità e a costi molto bassi.
Tutti i miei studenti, di qualsiasi classe, ormai posseggono un kit Arduino con una buona dotazione di componentistica elettronica, pertanto le esercitazioni  in DaD non avvengono solamente usando simulatori, ma svolgendo praticamente loro a casa ed io a casa o a scuola le esercitazioni e allo stesso modo si opererà per l’attività di PCTO, fornendo un kit agli allievi.

Il kit consiste in un supporto di compensato da 4 mm tagliato a laser a scuola le cui parti verranno fissate utilizzando colla vinilica. Il controllo avviene mediante un Arduino Nano connesso ad una Sensor Shield V03 che permetterà agevolmente di connettere sensori e attuatori mediante semplici jumper evitando saldature.

I motori sono costituiti da due servomotori a rotazione continua, ciò consentirà di alimentare direttamente i motori dalla scheda Arduino evitando l’aggiunto di una ponte H per controllare i motori, azione che i ragazzi svolgeranno in altre esercitazioni. Due i sensori utilizzati sul robot: sensore ad ultrasuoni e sensori IR. L’alimentazione avverrà tramite una batteria da 9V. Il controllo dei movimenti del robot potrà avvenire anche remotamente via Bluetooth con Smartphone. Due gli elementi stampati in 3D, una ball caster in cui viene inserita una biglia di vetro e un supporto per il sensore ad ultrasuoni.

Durante la prima lezione gli allievi dovranno, seguendo il video allegato, assemblare tutte le parti, ricordando prima di ogni cosa di fissare la sensoristica e l’elettronica e successivamente procedere con l’incollaggio delle varie parti di compensato della struttura.

Per poter assemblare il robot bisognerà seguire il video allegato e le fotografie che seguono in cui sono evidenziate alcune parti.

E’ importante inoltre porre attenzione alla parte superiore di compensato che ha un orientamento specifico, seguire attentamente le indicazioni del video e delle fotografie.

A questa prima lezione allego la presentazione del progetto e i sorgenti grafici (pdf) in modo che anche altri colleghi o studenti possano duplicare e migliorare l’attività.

Nelle successive lezioni verranno mostrati i collegamenti elettrici delle varie parti e proposti alcuni sketch di esempio da cui partire per aggiungere le funzionalità richieste.

Presentazione del progetto.

Titolo del progetto: SumoRobot

Simulare la progettazione e la realizzazione da parte di un’azienda di un kit robotico per l’apprendimento del Coding e della Robotica per studenti della scuola media e primi due anni delle superiori.
Il Robot deve avere caratteristiche tali da poter essere impiegato in diverse tipologie di sperimentazioni didattiche:

  • evita ostacoli
  • segui linea
  • comando a distanza via Smartphone
  • modalità gara Sumo

Il kit dovrà essere corredato da:

  • Titolo Azienda
  • Titolo del prodotto (non deve essere quello dell’attività di PCTO) corredato da logo
  • Brochoure pubblicitaria
  • Manuale di istruzioni per il montaggio composto da: lista materiali e componenti, fasi di montaggio, il tutto arricchito con immagini e disegni tecnici
  • Manuale introduttivo alla programmazione con Arduino indirizzata alla programmazione del robot
  • Lista di sketch di esempi commentati e funzionanti da allegare al kit
  • Slide di presentazione del progetto
  • Sito internet di riferimento in cui raccogliere tutta la documentazione per il cliente

Note

  • Tutta la documentazione dovrà essere prodotta in lingua italiana ed inglese.
  • Il sito internet dovrà essere realizzato con Google Site e sarà visibile solo mediante account personale dello studente al gruppo di lavoro e ai docenti del Consiglio di Classe
  • Il diario di bordo dovrà essere prodotto con Google Documenti e dovrà collezionare l’attività svolta durante ogni giornata di lavoro
  • Nel diario di bordo bisognerà includere una sezione di “considerazioni personali” espresse da ogni singolo studente sull’attività svolta ed eventuali suggerimenti per il miglioramento del progetto.
  • La presentazione del prodotto dovrà essere realizzata con Google Presentazioni
  • Ogni fase costruttiva dovrà essere documentata in modo fotografico e con brevi video

Lista componenti

  • Sensore ultrasuoni HC-SR04
  • Sensor Shield per Arduino Uno Nano V3
  • Servomotori a rotazione continua 360° –  FS90R con ruote
  • Arduino Nano (originale o compatibile) nella versione compatibile che utilizza un convertitore da USB a Seriale tipo CH340G è indispensabile installare un driver specifico
  • Cavo di Alimentazione 9V con cavo jack maschio 2.1 X 5.5 mm
  • Batteria 9V
  • Jumper Femmina-Femmina

Orientamento delle varie parti della struttura del robot

Vista frontale del robot

Vista dal basso del robot, si notano i due sensori IR fissati con vite M3 da 12 mm

Blocco supporto sensore ultrasuoni mediante due viti M3 da 12 mm

I servomotori sono fissati alla struttura mediante due fascette stringicavo. Seguire l’orientamento dei servomotori così come indicato nelle immagini che seguono, i cavi di uscita dei servomotori devono essere rivolti verso l’esterno

Nell’immagine si nota in quali fessure far passare la fascetta stringicavo

La chiusura della fascetta deve avvenire nella parte inferiore del robot mantenendo il nodo di chiusura così come indicato nell’immagine

Le ruote vanno fissate al mozzo del motore mediante apposita vite

La scheda Sensor Shield V03 va fissata ai giunti esagonali mediante vite M3 da 10 mm

Nella prossima lezione vedremo come collegare le varie parti elettroniche ed inizieremo con la programmazione del robot.

Buon Making a tutti 🙂

EduRobot Lift/Elevator

Nuova versione del kit EduRobot Lift, ascensore/montacarichi da utilizzare per le esercitazioni di laboratorio di sistemi elettronici e attività di PCTO negli istituti tecnici industriali e professionali.

Rispetto alla versione precedente alcune migliorie che ne facilitano la costruzione. Il controllo può essere effettuato in diverse modalità: Siemens Step 7 1200, Logo8!, Siemens IoT 2040, Arduino. La struttura è stata disegnata con Adobe Illustrator e tagliata a laser presso il Laboratorio Territoriale del mio istituto, l’ITIS G.B. Pininfarina di Moncalieri. Il materiale è costituito da compensato da 4 mm e due elementi stampati in 3D in PETG. Il montaggio della struttura richiede circa 40/45 min.

Se desideri realizzare il kit, seguire il link su Thingiverse, da cui potrete prelevare il file PDF per il taglio laser e i file STL per la stampa 3D della struttura del motore.

Volutamente per la realizzazione di questo kit sono stati scelti materiali economici in quanto il mio desiderio è quello di assegnarne un kit ad ogni studente.

  • foglio di compensato da 4mm 80×60 mm (costo indicativo: €4)
  • 24 viti M3 da 12 mm
  • 24 dadi M3
  • motorino passo passo 28BYJ-48
  • colla vinilica
  • due elementi stampati in 3D
  • spago

Nel kit viene utilizzato un motore passo passo economico il 28BYJ-48 in modo che possa essere acquistato da tutti gli studenti. Con qualche piccola modifica è possibile utilizzare anche un motorino DC da 6V, i classici “motorini gialli” utilizzati dagli studenti per la costruzione di piccoli robot.

Quattro gli obiettivi di questo progetto:

  1. offrire una guida fotografica per i miei studenti della classe 3′ che dovranno svolgere il PCTO (ex Alternanza Scuola Lavoro) facendo una simulazione di attività aziendale, quest’anno dovranno diventare tecnici di un’azienda che produce ascensori e montacarichi;
  2. mostrare agli studenti che è possibile imparare ad imparare attraverso attività laboratoriali che prevedono la progettazione e la costruzione dei propri strumenti di apprendimento;
  3. il mercato offre molteplici strumenti, kit robotici di ogni tipo che rispondono a molteplici esigenze didattiche, ma alcune volte non rispondono ad esigenze specifiche di un percorso di studio o di un argomento, ecco che la scuola diventa produttrice dei propri ausili didattici specifici;
  4. rispondere alle numerose richieste di realizzazione del kit pervenutemi da molti colleghi di scuole italiane dopo il mio intervento per SCE Siemens in cui ho mostrato le mie sperimentazioni didattiche nell’ambito dell’automazione, tra queste anche EduRobot Lift. Ringrazio tutti.

Di seguito un breve video che mostra la struttura generale del kit e di seguito una guida fotografica passo passo che ne dettaglia le fasi di costruzione.

In successive lezioni verranno proposti modalità di controllo del sistema.

Sentitevi liberi di apportare modifiche e migliorie alla struttura. Mi farebbe piacere avere un vostro parere ed eventualmente, se utilizzate il kit, inviatemi le fotografie dei vostri lavori in modo che io possa pubblicarle su questo sito.

Il progetto è rilasciato con la seguente licenza: Attribuzione 4.0 Internazionale (CC BY 4.0)

Come viene mostrato nell’immagine che segue il kit è costituito da 21 elementi di compensato e due elementi stampati in 3D, nell’immagine potete notare anche un 3′ elemento, una piccola rondella di plastica, che è stata poi sostituita da un dado M3 (i dettagli al fondo di questa lezione).

Struttura impiegata per fissare il motore passo passo e il rocchetto utilizzato per avvolgere lo spago a cui verrà fissata la cabina dell’ascensore.

Nell’immagine si vedono viti M3 da 12 mm e dadi M3.

La colla vinilica viene utilizzata solamente per fissare i piedini alla base della struttura.

Poiché sulla base del kit sono presenti delle viti, per evitare che queste raschino la base di appoggio, sono stati previsti dei piedini la cui altezza è di 8 mm, ciò si ottiene incollando tra loro due elementi.

Incollare i piedini sugli angoli della base.

Allineare i piedini come riportato nell’immagine che segue.

Fare in modo che ci sia anche un allineamento rispetto alla verticale.

Predisporre il montaggio della cabina dell’ascensore. Si consiglia di inserire prima il dato nella fessura così come riportato nell’immagine. La parte inferiore della cabina è identica a quella superiore con la differenza che la parte superiore ha un foro in cui andremo ad inserire lo spago.

Inserire la parete laterale e dalla parte opposta inserire la vite. Bloccare i due elementi, ma attenzione a non avvitare con forza.

Procedere allo stesso modo per la parte posteriore della cabina dell’ascensore: Inserire i dadi, incastrare nella fessura la parete ed avvitare con le due viti.

Inserire la parte superiore della cabina contraddistinta da un foro centrale.

Passiamo ora alle colonne. Sono presenti 6 colonne di due tipi: con fori e senza fori, hanno tutte la stessa dimensione. Le colonne con fori hanno un’orientamento, nell’immagine si nota che i fori hanno distanze diverse dal bordo che va incastrato alle basi. I fori che hanno una distanza di 4 cm dalla base vanno rivolti verso la base di appoggio dell’ascensore.

Tre sono le colonne frontali ed andranno inserite nelle apposite fessure. Anche in questo caso si consiglia di inserire prima i dadi.

Posizione in cui devono essere inserite le colonne frontali.

Inserire le viti dalla parte inferiore della base.

Inserire le colonne laterali. Prima di inserirle nelle fessure incastrare i dadi M3.

Bloccare con viti.

Montare la colonna posteriore.

Procedere nel montaggio così come fatto per le altre colonne.

Inserire la cabina dell’ascensore, con la parte aperta disposta frontalmente.

Le scanalature laterali permettono di far scorrere la cabina tra le guide.

Fissare la base superiore del kit. Inserire nelle colonne i dadi e successivamente inserire nella posizione indicata dalle frecce le viti.

Avvitare, ma attenzione a non serrare con forza, rischiereste di rompere il compensato.

Inserire 4 viti nella posizione indicate dalle frecce.

Avvitare i dadi.

Inserire il rocchetto all’interno dell’asse del motore. Attenzione che il rocchetto ha un’orientamento, ciò è mostrato nel video ad inizio di questa lezione. Come si nota l’asse del motore non è cilindrico.

Inserire la vite nella posizione indicata dalla freccia, questa costituisce un supporto per il rocchetto. Avvitare il motore alla struttura.

Fissiamo lo spago alla cabina. Inserite lo spago nel foro dalla parte superiore e legateci un dado.

Poggiate la cabina sulla base della struttura e fate in modo che il filo sia ben dritto ed incollatelo sul rocchetto. Il risultato dovrebbe essere il seguente:

Buon Making a tutti 🙂

Utilizzo dell’LCD 16×2 Hitachi HD44780 1602 con modulo I2C PCF8574T

Addendum al progetto EduRobot.

Una settimana è bastata per scatenare la fantasia di giovani studenti alle prese con EduRobot per l’attività di Alternanza Scuola Lavoro. Le relazioni di lavoro mettono in evidenza soluzioni alternative originali, la richiesta è di continuare ad aggiungere funzionalità ad EduRobot, vedremo nelle prossime settimane come proseguire con i lavori, ma sicuramente in questa prima fase mi posso ritenere soddisfatto! 😊

Tra le richieste che mi sono state fatte vi è quella di inserire un display per aggiungere interattività con il robot. Tra le possibilità ho suggerito l’utilizzo di un LCD 16×2 Hitachi HD44780 1602 quelli in dotazione con molti kit Arduino. Per rendere più agevole la gestione e i collegamenti, visto l’elevato numero di connessioni presenti su EduRobot, ho consigliato l’utilizzo di un modulo PCF8574T per il controllo in I2C, poiché gli studenti sono giovani ed ancora non hanno affrontato questo argomento, con questo post voglio dare un piccolo aiuto.

Disponiamo dei moduli della sunfounder su cui è già saldato il modulo i2C:

l’utilizzo è identico ai più comuni expander esterni come quelli indicati nell’immagine che segue:

Il display è costituito da 4 pin di connessione, due dedicati all’alimentazione e due alla comunicazione i2C.

Le connessioni tra LCD1602 i2C ed Arduino sono i seguenti:

LCD1602 —> Arduino
GND -> GND
Vcc -> 5V
SDA -> A4
SCL -> A5

Per poter utilizzare questo display è necessario installare la libreria LiquidCrystal_I2C dal seguente link: https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

Prelevate il file .zip ed installate la libreria direttamente dall’IDE di Arduino:

in alternativa potete scompattare e copiare il tutto nella cartella libraries di Arduino.

Piccolo avvertimento, sicuramente nelle vostre sperimentazioni prenderete spunto da sketch che troverete on-line, alcune volte questi esempi sono datati e si riferiscono ad una versione dell’ide di qualche anno fa in cui si poteva inizializzare l’LCD nel setup con: lcd.init(), ciò non è più possibile sostituitela con la classe lcd.begin() così come indicato negli esempi che seguono.

Includo a questo post una serie di sketch tutti tratti dal reference di Arduino e riadattati per un uso con il modulo PCF8574T in modo da accelerare le attività di sperimentazione dei miei allievi.

Il funzionamento di ogni esempio è dettagliato con commenti all’interno degli sketch.

/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 1: scrittura testo su due righe
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
void setup()
{
  lcd.begin();      // inizializzazione dell'LCD
  lcd.backlight();  // attivazione della retroilluminazione
}
//-----------------------------


void loop()
{
  lcd.setCursor(2,0);
  lcd.print("Ciao Ragazzi");
  lcd.setCursor(0,1);
  lcd.print("Io sono EduRobot");
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 2: noBlink - Blink
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
void setup()
{
  lcd.begin();      // inizializzazione dell'LCD
  lcd.backlight();  // attivazione della retroilluminazione
}
//-----------------------------

void loop() {
  // Turn off the blinking cursor:
  lcd.noBlink();
  delay(3000);
  // Turn on the blinking cursor:
  lcd.blink();
  delay(3000);
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 3: noDisplay - Display
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
void setup()
{
  lcd.begin();      // inizializzazione dell'LCD
  lcd.backlight();  // attivazione della retroilluminazione
  lcd.print("EduRobot");
}
//-----------------------------

void loop() {
  // disattiva il display
  lcd.noDisplay();
  delay(500);
  // attiva il display
  lcd.display();
  delay(500);
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 4: scrollDisplayLeft() - scrollDisplayRight()
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
void setup()
{
  lcd.begin();      // inizializzazione dell'LCD
  lcd.backlight();  // attivazione della retroilluminazione
  lcd.print("EduRobot");
  delay(1000);
}
//-----------------------------

void loop() {
  // sposta di 8 posizioni (lunghezza della tringa: EduRobot) a sinistra
  for (int positionCounter = 0; positionCounter < 8; positionCounter++) {
    // per far percepire la variazione di posizione del testo mettiamo in pausa per un breve istante
    lcd.scrollDisplayLeft();
    // aspetta un momento:
    delay(150);
  }

  // sposta di 24 posizioni (lunghezza della tringa + lunghezza del siplay(n. colonne)) a destra
  for (int positionCounter = 0; positionCounter < 24; positionCounter++) {
    // sposta di una posizione a destra
    lcd.scrollDisplayRight();
    // per far percepire la variazione di posizione del testo mettiamo in pausa per un breve istante
    delay(150);
  }

  // sposta di 24 posizioni (lunghezza della tringa + lunghezza del siplay(n. colonne)) a sinistra
  // to move it back to center:
  for (int positionCounter = 0; positionCounter < 24; positionCounter++) {
    // sposta di una posizione a sinistra
    lcd.scrollDisplayLeft();
    // per far percepire la variazione di posizione del testo mettiamo in pausa per un breve istante
    delay(150);
  }

  // al termine di un ciclo di uno spostamento destra e sinistra
  // attesa di 1 secondo
  delay(1000);
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 5: Serial Input
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------
void setup()
{
  lcd.begin();        // inizializzazione dell'LCD
  lcd.backlight();    // attivazione della retroilluminazione
  Serial.begin(9600); // inizializzazione della porta seriale
}
//-----------------------------


void loop() {
  // quando un carattere viene inviato alla serial monitor...
  if (Serial.available()) {
    // attende un momento prima di inviare il testo sulla seril monitor
    delay(100);
    // cancella lo schermo
    lcd.clear();
    // legge tutti i caratteri disponibili sulla seriale
    while (Serial.available() > 0) {
      // visualizza i caratteri sul display
      lcd.write(Serial.read());
    }
  }
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 6: setCursor()
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------

const int numRows = 2;
const int numColonne = 16;

void setup()
{
  lcd.begin();        // inizializzazione dell'LCD
  lcd.backlight();    // attivazione della retroilluminazione
}
//-----------------------------


void loop() {
  // stampa in loop i caratteri ASCII da 'a' a 'z':
  for (int lettera = 'a'; lettera <= 'z'; lettera++) {
    // ciclo per le colonne
    for (int  riga = 0; riga < numRows; riga++) {
      // ciclo per le righe
      for (int colonna = 0; colonna < numColonne; colonna++) {
        // imposta la posizione del cursore
        lcd.setCursor(colonna, riga);
        // stama il carattere
        lcd.write(lettera);
        delay(200);
      }
    }
  }
}
/* Prof. Michele Maffucci
 * Utilizzo di un display LCD 16×2 Hitachi HD44780 1602
 * con modulo i2C PCF8574T
 * Esempio 7: leftToRight() - rightToLeft()
 */

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
LiquidCrystal_I2C lcd(0x27, 16, 2); // impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
//-----------------------------

int lettera = 'a';

void setup()
{
  lcd.begin();        // inizializzazione dell'LCD
  lcd.backlight();    // attivazione della retroilluminazione
  lcd.cursor();       // attiva il cursore
}
//-----------------------------


void loop() {
  // cambia direzione (da destra a sinistra)
  // quando l'ultima lettera stampata è la 'm':
  if (lettera == 'm') {
    // sposta il cursore a destra per stampare la lettera successiva
    lcd.rightToLeft();
  }
  // cambia direzione (da sinistra a destra)
  // // quando l'ultima lettera stampata è la 's':
  if (lettera == 's') {
    // sposta il cursore a sinistra per stampare la lettera successiva
    lcd.leftToRight();
  }
  // reset quando atriviamo alla 'z':
  if (lettera > 'z') {
    // spostare il cursore a (0,0):
    lcd.home();
    // ricomincia dalla posizione 0
    lettera = 'a';
  }
  // stampa il carattere
  lcd.write(lettera);
  // aspetta un secondo
  delay(1000);
  // incrementa la lettera
  lettera++;
}

Buona sperimentazione 🙂