Archivi tag: arduino

Costruire una sonda di umidità del terreno

Durante il prossimo corso: realizzare laboratori green con il Making e il Coding, utilizzerò diversi sensori per misurare grandezze fisiche. Poiché in questi giorni sono occupato con la preparazione delle sperimentazioni che svolgerò durante il corso, pubblicherò di volta in volta su questo sito indicazioni e suggerimenti sui materiali da utilizzare, in questo modo potrete trovarvi pronti nel svolgere insieme a me le sperimentazioni.

Alcuni sensori possono essere costruiti con materiali che abbiamo in casa, un semplice sensore di umidità del terreno può essere costruito con due chiodi in acciaio. Tecnicamente inserendo i due chiodi nel terreno e connettendoli opportunamente ad un microcontrollore saremo in grado di valutare approssimativamente il livello di umidità del terreno, la modalità di taratura e di lettura verrà mostrata durante il corso.

Per mantenere ordine durante le fasi di sperimentazioni suggerisco due semplicissime soluzioni che permettono di realizzare una sonda di umidità:

  • la prima fa uso di un mammut, una morsettiera elettrica che tipicamente viene utilizzata negli impianti elettrici civili, usata per unire cavi elettrici;
  • la seconda soluzione fa uso di un oggetto stampato in 3D.

Sonda di umidità realizzata con un mammut

L’utilizzo di un mammut permette di vincolare i chiodi. Tra la testa del chiodo e il mammut inseriremo il connettore a coccodrillo.

Modo 1

Questa soluzione potrebbe causare il contatto tra i due terminali che deve essere assolutamente evitato. Potreste procedere isolando con nastro isolante.

Modo 2

Separare i punti di connessione dei due chiodi

Per queste soluzioni ho utilizzato mammut per cavi da 6mm^2 e chiodi di acciaio da 90 mm

Sonda di umidità realizzata con supporto stampato in 3D – Moisture Sensor

In questa soluzione dovrete stampare in 3D un elemento che permette agevolmente di inserire nel terreno la sonda e realizza una separazione elettrica tra i morsetti a coccodrillo connessi ai due chiodi. I due chiodi di acciaio sono lunghi 80 mm

Se desiderate prelevare e stampare il supporto seguite il link.

Durante il corso vedremo come utilizzare la sonda con diversi dispositivi: micro:bit, Arduino, Raspberry Pi e sperimenteremo l’uso di altre tipologie di sonde resistive e successivamente analizzeremo l’uso di sonde capacitive.

Buon Making Green a tutti 🙂

I miei corsi per Tecnica della Scuola: realizzare laboratori green con il Making e il Coding

Proposte didattiche innovative per la sostenibilità ambientale

Il corso nasce da un progetto che desideravo mettere in atto in periodo pre-pandemico, avevo l’esigenza di trovare soluzioni per la prevenzione e il contrasto alla dispersione scolastica, l’idea molto semplice era quella a contrastare e prevenire fenomeni di emarginazione sociale e abbandono scolastico tra gli adolescenti attraverso un percorso educativo nell’ambito dell’agricoltura e dell’automazione in campo agricolo. Nei mesi di lockdown non potendo sviluppare l’attività didattica all’aperto, mi sono quindi concentrato su attività da svolgere in laboratorio che permettessero poi di strutturare in diverse modalità il progetto attraverso serre piccole di diverso tipo, anche idroponiche, il tutto con l’obiettivo di applicare questa esperienza a serre più grandi in campo agricolo. L’esperienza del PCTO dello scorso anno dei miei studenti, che hanno sviluppato in autonomia serre idroponiche, è stato più che utile per migliorare la proposta didattica che mi ha permesso di strutturare un percorso laboratoriale che ho poi declinato negli scorsi mesi per livelli di scuola costruendo kit specifici.

Il corso che propongo è la sintesi di un’esperienza in cui vorrei mostrare come con la pratica e con il Coding è possibile sensibilizzare i ragazzi all’ambiente e allo sviluppo sostenibile.

Presentazione del corso

Il corso intende mostrare come, attraverso un’apprendimento attivo ed inclusivo, si possono sviluppare laboratori green per la transizione ecologica, sostenibili e innovativi per la scuola primaria e secondaria al fine di riqualificare giardini e cortili scolastici trasformandoli in ambienti di esplorazione e di apprendimento delle discipline curricolari in un percorso nel quale l’esperienza stessa genera conoscenza e apprendimento.

La realizzazione di orti didattici e giardini a fini didattici prevede un controllo dei parametri fisico/chimici che può essere agevolmente svolta con strumenti didattici che vengono utilizzati comunemente in attività laboratoriali per l’apprendimento del Coding e la robotica didattica.

Schede elettroniche come BBC micro:bit, Arduino, Raspberry Pi, possono assolvere a questo compito e la loro programmazione può avvenire utilizzando i linguaggi più adatti al livello di scuola a cui appartengono gli studenti, quindi si potrà optare per un linguaggio grafico a blocchi o testuale.

L’obiettivo del corso è quello di fornire le competenze necessarie per realizzare in piena autonomia attività laboratoriali volte al controllo automatico dei parametri ambientali che permettono la crescita di singole piante o piccole serre anche idroponiche con un sistema di monitoraggio delle colture basati sull’IoT (Internet of Things). Verranno inoltre mostrate attività pratiche per la realizzazione di dispositivi per il monitoraggio dell’inquinamento atmosferico, acustico e luminoso.

Continua a leggere

CoolTerm – Alternative alla Serial Monitor di Arduino

La comunicazione seriale viene usata in moltissimi dispositivi elettronici che utilizziamo ogni giorno. Rispetto alla comunicazione parallela (4, 8 o 64-bit), la comunicazione seriale è utilizzata spesso nei sistemi embedded a causa del basso costo e della trasmissione efficace nelle lunghe distanze.
Per chi opera con Arduino, sa che l’uso della Serial Monitor è necessario per la lettura di dati inviati serialemente tra Arduino ed il computer con altri dispositivi elettronici, ad esempio l’invio sulla Serial Monitor dei valori di temperatura rilevata da un sensore di temperatura connesso ad Arduino.

La comunicazione seriale è inoltre uno strumento utilissimo per effettuare il debug, ovvero inviare dei messaggi sulla seriale per l’utente al fine di rilevare errori o mettere in evidenza i passi di esecuzione di un programma o lo stato di un sistema.

I dati inviati da Arduino al Computer o viceversa possono essere visualizzati sul monitor del computer (attraverso la finestra della Serial Monitor) o su altri dispositivi come ad esempio un display LCD connesso ad Arduino.

Ho mostrato più volte in precedenti lezioni l’uso dei comandi seriali: Serial.begin(), Serial.print(), Serial.read() e l’utilizzo della Serial Plotter che permette di visualizzare il grafico su piano cartesiano dei dati seriali trasmessi da Arduino.

Sicuramente anche voi, nell’uso costante della Serial Monitor, avrete notato i limiti dello strumento, come esempio l’impossibilità del salvataggio dei dati inviati ad un file di log.
E’ utile quindi considerare l’uso di un terminale alternativo che offra maggiori funzionalità rispetto alla Serial Monitor, come ad esempio visualizzare:

  • i caratteri di controllo;
  • i dati in formato testo o binario o entrambi;
  • salvare i dati rilevati in un file di log.

Tra i molti software disponibili il mio consiglio va a CoolTerM, un terminale user-friendly estremamente utile.
CoolTerM viene distribuito con licenza freeware / donationware sviluppato da Roger Meier ed è disponibile per dispositivi Windows, Mac, Linux.

Come si usa CoolTerM per rilevare dati che provengono da Arduino.

A titolo di esempio sfruttiamo quanto già svolto in passato, visualizzimo su CoolTerM la distanza di un ostacolo rilevato da un sensore ad ultrasuoni.
Prendiamo come riferimento lo sketch che segue, tratto da una mia lezione sull’uso del sensore ad ultrasuoni per un kit robotico, nello stesso post trovate la teoria di funzionamento del sensore HC-SR04.

/* Prof. Maffucci Michele
   
   Utilizzo del sensore ultrasuoni HC-SR04
   Misura della distanza di un ostacolo

*/

long durata;          // durata dell'impulso
long distanza;        // distanza dell'oggetto
int pin_echo = 7;     // pin Arduino a cui è collegato il sensore SR04
int pin_trig = 9;     // pin Arduino a cui è collegato il sensore SR04

void setup()
{
    Serial.begin(9600);
	pinMode(pin_trig, OUTPUT);
  	pinMode(pin_echo, INPUT);
  	Serial.println("Sensore ad ultrasuini");
}

void loop()
{
  Serial.print("Distanza ostacolo: ");
  Serial.println(distanzaOstacolo());
  delay(100);
}

// rilevazione distanza ostacolo

// misura la distanza dell'ostacolo
long distanzaOstacolo()
{
  digitalWrite(pin_trig, LOW);
  delayMicroseconds(2);
  digitalWrite(pin_trig, HIGH);
  delayMicroseconds(10);
  digitalWrite(pin_trig, LOW);
  durata = pulseIn(pin_echo, HIGH);
  distanza = (durata / 2.0) / 29.1;
  delay(100);
  return distanza;
}

Con Arduino connesso al computer aprire CoolTerM e selezionare “Options”, da quì impostare la porta a cui è connessa la scheda e la velocità di connessione a 9600, una velocità diversa non permetterà una lettura corretta dei dati.

Torna alla schermata principale fate clic su “Connect”, ciò permetterà di avviare la trasmissione dei dati tra Arduino e il computer e i dati inizieranno ad apparire.
Quando desiderate interrompere la trasmissione ovviamente farete clic su “Disconnetti”.

E’ spesso utile analizzare i dati raccolti, in tal caso selezionate: Connection > Capture to Text/Binary File > Start ciò permetterà di salvare i vostri dati in un file TXT che potrà poi essere analizzato ad esempio con un foglio di calcolo.

CoolTerM offre ulteriori funzionalità molto utili:

  • se disponibile è possibile connettere più porte seriali concorrenti;
  • visualizzazione dei dati in formato semplice o esadecimale (HEX);
  • salvataggio e caricamento delle opzioni di connessione;
  • gestione dei caratteri speciali;
  • scripting;
  • eco locale di dati trasmessi / ricevuti;

Buon Making a tutti 🙂

Esercitazioni di base di Arduino – visualizzazione luminosità LED mediante una barra di avanzamento su display 16×2


Continuo nell’aggiornamento delle esercitazioni di base per gli studenti di 3′ dell’ITIS (Elettronica ed Automazione) e per gli utenti che iniziano con Arduino.
Utilizzeremo un display LCD 16×2 di tipo I2C su cui visualizzeremo mediante una barra di avanzamento, la quantità di luminosità impostata per il LED, mediante un potenziometro.

Per la gestione di un display LCD di tipo I2C rimando alla mia lezione: Utilizzo dell’LCD 16×2 Hitachi HD44780 1602 con modulo I2C PCF8574T.

Per la creazione di caratteri personalizzati rimando alla mia lezione: Disegnare caratteri personalizzati con Arduino per un LCD 16×2.

Lista componenti

  • N.1 Arduino UNO
  • N.1 Breadboard
  • N.1 LCD 16×2 I2C
  • N.1 Potenziometri da 10 KOhm
  • N.1 LED da 5 mm
  • N.1 Resistore da 220 Ohm
  • jumper

Schema di collegamento

Scketch

Di seguito viene indicato il codice i base, all’interno i commenti che ne dettagliano il funzionamento di ogni parte:

/*
   Prof. Maffucci Michele
   https://www.maffucci.it
   Ver.1 - 27.12.21
   Controllo di luminosità LED con
   visualizzazione intensità mediante una
   barra di avanzamento su display 16x2
*/

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

byte pinPot = A0;           // pin analogico 0 a cui connettere il potenziometro per controllare la luminosità
byte pinLed = 3;            // pin PWM a cui connettere il LED
int  analogVal = 0;         // variabile in cui memorizzare il valore impostato dal potenziometro
int  luminosita = 0;        // variabile in cui memorizzare la luminosità 
byte barraAvanzamento = 0;  // indice barra avanzamento

// Per maggiori informazioni sulla realizzazione di caratteri speciali:
// https://www.maffucci.it/2020/01/18/disegnare-caratteri-personalizzati-con-arduino-per-un-lcd-16x2/

// Carattere personalizzato per disegnare la barraAvanzamento di avanzamento
byte iconaBarra[8] = {
  B11111,
  B11111,
  B11111,
  B11111,
  B11111,
  B11111,
  B11111,
};

// inizializzazione della libreria in cui è descritta la modalità di utilizzo dei pin
// impostazione dell'indirizzo dell'LCD 0x27 di 16 caratteri e 2 linee
LiquidCrystal_I2C lcd(0x27, 16, 2);
//-----------------------------

void setup()
{
  lcd.begin();      // inizializzazione dell'LCD
  lcd.backlight();  // attivazione della retroilluminazione

  // Inpostazione ad OUTPUT del pin a cui connettiamo il LED
  pinMode(pinLed, OUTPUT);

  // Cancella il display
  lcd.clear();

  // Stampa il messaggio sulla prima riga del display
  lcd.print("Luminosita' LED");

  //Creazione del carattere per la barra di avanzamento
  lcd.createChar(0, iconaBarra);
}

// Per maggiori informazioni sull'uso del display 16x2 I2C:
// https://www.maffucci.it/2019/01/25/utilizzo-delllcd-16x2-hitachi-hd44780-1602-con-modulo-i2c-pcf8574t/
//-----------------------------

void loop() {
  // Cancella il display
  lcd.clear();
  
  // Stampa il messsaggio sulla prima riga
  lcd.print("Luminosita' LED");
  
  //Posiziona il cursore nella seconda riga, prima colonna
  lcd.setCursor(0,1);
  
  // Lettura del valore impostato dal potenziometro
  analogVal = analogRead(pinPot);
          
  // Conversione del valore analogico impostato con il potenziometro
  // in Duty Cicle per impostare la luminosità del LED
  luminosita=map(analogVal, 0, 1024, 0, 255); 
  
  // Impostazione della luminosità del LED
  analogWrite(pinLed, luminosita); 
  
  // Conversione della luminosità in quantità di caratteri della barra da stampare 
  barraAvanzamento=map(luminosita, 0, 255, 0, 15);
  
  // Stampa la barra di avanzamento
  for (byte i = 0; i < barraAvanzamento; i++)
  {
    lcd.setCursor(i, 1);   
    lcd.write(byte(0));  
  }
  // leggero ritardo di 500 ms per visualizzare la barra
  delay(500);        
}

Proposta esercizi

Esercizio 1
Nell’esempio proposto viene utilizzato un delay() finale per permettere la visualizzazione dei caratteri sul display. Sostituire il delay() ed utilizzare l’istruzione millis() per valutare il tempo trascorso e controllare la stampa dei caratteri sul display.

Esercizio 2
Modificare il programma precedente raddoppiando il numero di caratteri che rappresenta la barra di avanzamento.

Esercizio 3
Modificare l’esercizio proposto variando la barra di avanzamento in funzione dell’approssimarsi al valore massimo o minimo della luminosità.

Esercizio 4
Modificare l’esercizio proposte inserendo un buzzer che emette un suono la cui frequenza varia in funzione dell’intensità luminosa del LED.

Buon Making a tutti 🙂

Esercitazione di Sistemi Elettronici – Arduino – impianto semaforico ad 1 via

Questa esercitazione è dedicata ai miei studenti di 3′ (Automazione ed Elettronica Biomedicale) che come compito per le vacanze natalizie dovranno, partendo dall’esempio svolto, realizzare le 4 varianti richieste al fondo di questa lezione.

Introduzione

  • In questo progetto bisognerà realizzare l’impianto semaforico per automobili e modificarlo secondo le specifiche indicate al fondo di questo post
  • vengono utilizzati 3 LED: verde, giallo e rosso per simulare un semaforo reale
  • vengono utilizzati 2 LED : verde e rosso per simulare il semaforo per i pedoni
  • è presente un pulsante di richiesta attraversamento per i pedoni

Lista componenti

  • 1 Breadboard
  • 1 Arduino UNO
  • 3 LED da 5mm (rosso, giallo, verde)
  • 2 LEd da 5mm LED (rosso, verde)
  • 5 resistori da 220 Ohm
  • 1 resistore da 10 kOhm
  • 1 pulsante normalmente aperto
  • jumper

Collegamenti

Sketch

Per la realizzazione di questo progetto non avrete necessità di nessuna libreria da aggiungere all’IDE di Arduino.

L’automazione del semaforo sarà la seguente:

  • Il semaforo per le automobili è sempre verde e la luce pedonale risulta sempre rossa a meno che qualcuno preme il pulsante.
  • Quando viene premuto il pulsante dal pedone:
    • il semaforo auto cambia da giallo e successivamente si spegne il giallo e si accende il rosso;
    • sul semaforo pedonale si spegne il rosso e si accende il verde;
    • le luci del semaforo pedonale rimangono in questo stato per un tempo pari a tempoAttraversamento
    • successivamente il verde del semaforo pedonale lampeggia, terminata la sequenza di lampeggio si spegne e si accende il rosso;
  • il semaforo delle auto passa da rosso a verde

Tutte queste funzioni sono svolte dalla funzione cambiabentoLuci().

/*
   Prof. Maffucci Michele
   Ver.1 - 22.12.21
   Impianto semaforico con attraversamento
   pedonale a richiesta
*/

// pin a cui sono connessi i LED
byte rossoAuto = 13;
byte gialloAuto = 12;
byte verdeAuto = 11;
byte rossoPedone = 10;
byte verdePedone = 9;

// pin a cui è connesso il pulsante di richiesta
byte pulsante = 8;

// tempo massimo di attraversamento del pedone
int tempoAttraversamento = 10000;

// definizione della variabile per l'impostazione
// del cambio stato del semaforo auto
unsigned long tempoCambio;

void setup() {
  // inizializzazione timer
  tempoCambio = millis();

  // inizializzazione dei pin come OUTPUT

  pinMode(rossoAuto, OUTPUT);
  pinMode(gialloAuto, OUTPUT);
  pinMode(verdeAuto, OUTPUT);
  pinMode(rossoPedone, OUTPUT);
  pinMode(verdePedone, OUTPUT);

  // inizializzazione pin come INPUT
  pinMode(pulsante, INPUT);

  // accensione luci verdi
  // all'avvio le auto hanno il verde e i pedoni il rosso
  digitalWrite(verdeAuto, HIGH);
  digitalWrite(rossoPedone, HIGH);
  digitalWrite(rossoAuto, LOW);
  digitalWrite(gialloAuto, LOW);
  digitalWrite(verdePedone, LOW);

  // inizializzazione della Serial Monitor
  Serial.begin(9600);
}

void loop() {
  // la variabile state viene utilizzata per sapere se il
  // pulsante di attraversamento viene premuto
  int stato = digitalRead(pulsante);

  // lo stato del pulsante viene visualizzato sulla Serial Monitor
  Serial.println(stato);

  // Se viene premuto il pulsante e se sono
  // passati 5 secondi dall'ultima pressione del pulsante

  if (stato == HIGH && (millis() - tempoCambio) > 5000) {
    // chiama la funzione per il cambio luci
    cambioLuci();
  }
}

void cambioLuci() {
  digitalWrite(verdeAuto, LOW);      // il LED verde viene spento
  digitalWrite(gialloAuto, HIGH);    // il LED giallo viene acceso per 2 secondi
  delay(2000);

  digitalWrite(gialloAuto, LOW);    // il LED giallo viene spento
  digitalWrite(rossoAuto, HIGH);    // il LED rosso viene acceso per 5 secondi

  digitalWrite(rossoPedone, LOW);   // il LED rosso del pedone viene spento
  digitalWrite(verdePedone, HIGH);  // il LED verde del pedone viene acceso
  delay(tempoAttraversamento);

  // lampeggio del LED verde dei pedoni
  for (int x = 0; x < 10; x++) {
    digitalWrite(verdePedone, LOW);
    delay(100);
    digitalWrite(verdePedone, HIGH);
    delay(100);
  }
  digitalWrite(verdePedone, LOW);
  digitalWrite(rossoAuto, LOW);
  digitalWrite(rossoPedone, HIGH);
  digitalWrite(verdeAuto, HIGH);

  tempoCambio = millis();
}

Esercizio 1
Aggiungere un sensore ad ultrasuoni che rileva la presenza del pedone in fase di attraversamento, fino a quando viene rilevato il pedone viene mantenuto il verde per il pedone ed il rosso per le auto. E’ presente sempre il pulsante di richiesta attraversamento.

Esercizio 2
Ampliare l’esercizio 1 aggiungendo un display a 7 segmenti utilizzato come conto alla rovescia (da 9 a 0) per i pedoni quando attraversano.

Esercizio 3
Ampliare l’esercizio 1 aggiungendo un buzzer che con un segnale pulsante variabile, indica l’approssimarsi del rosso.

Esercizio 4
Ampliare l’esercizio proposto in questa lezione trasformando l’impianto semaforico da 1 via a 4 vie con rispettivi attraversamenti pedonali sulle 4 strade.

Per coloro che non sono miei studenti, sul mio Patreon nei prossimi giorni verrà proposta:

  • La soluzione a tutti gli esercizi proposti con schemi di collegamento e codice
  • Video di spiegazione
  • Sorgenti STL per la stampa 3D di un semaforo da poter essere inseriti all’interno di un plastico
  • Proposta progettuale per la realizzazione di un kit didattico per lo sviluppo di questa tipologia di esercizi.

Buon Making a tutti.