Archivi tag: coding

I miei corsi per Tecnica della Scuola: Carta Cartone e Coding – 3 ed.

Siamo giunti alla terza edizione del corso in cui utilizzo materiali poveri di facile reperibilità per proporre attività STEAM spero coinvolgenti. Come in ogni edizione aggiungerò nuove attività, suggerimenti e schede didattiche da utilizzare in classe.

Il corso fornisce una guida completa su come integrare progetti STEAM innovativi e a basso costo utilizzando cartone e componenti elettronici semplici. Gli insegnanti impareranno a trasformare materiali di uso quotidiano in strumenti educativi coinvolgenti. Le aule e i laboratori innovativi sono veri e propri centri di allenamento mentale, dove l’azione diventa un mezzo per comprendere e costruire conoscenza. Questi spazi si trasformano in luoghi di incontro, formazione e collaborazione, promuovendo lo sviluppo di una comprensione multisensoriale della realtà. In questi ambienti, gli studenti imparano a osservare e interagire con il mondo non solo visivamente, ma anche attraverso il tatto, stimolando la loro creatività e il pensiero progettuale. L’apprendimento in questi contesti diventa un’esperienza olistica che coinvolge tutti i sensi e nutre la mente.

Il corso valorizza la manualità e la creatività, esprimibili attraverso l’uso di materiali semplici e sostenibili come carta e cartone, combinati con elementi elettronici educativi. L’obiettivo è proporre attività laboratoriali finalizzate allo sviluppo di un pensiero critico e rispettoso della diversità, promuovendo l’etica del riutilizzo e la consapevolezza ambientale. Le attività STEAM proposte incoraggiano gli studenti a esplorare e innovare in modo economico, aprendo la strada a un apprendimento responsabile e creativo.

Per ogni attività del corso, saranno fornite guide dettagliate che descrivono i passaggi necessari per costruire diversi oggetti, oltre a istruzioni per la programmazione a blocchi e l’uso dei materiali. Questo approccio mira a stimolare l’esplorazione autonoma e la creatività degli studenti. Utilizzando strumenti come BBC micro:bit, Makey Makey, Make Code, Scratch 3 e altre tecnologie, gli studenti potranno realizzare progetti coinvolgenti come giochi interattivi, strumenti di misura e strumenti musicali, sperimentando così il potere dell’innovazione tecnologica.

Il corso prevede quattro incontri webinar di 2 ore ciascuno, per un totale di 8 ore:

  • Venerdì 21 giugno 2024 – Dalle 17.00 alle 19.00
  • Lunedì 24 giugno 2024 – Dalle 17.00 alle 19.00
  • Martedì 25 giugno 2024 – Dalle 17.00 alle 19.00
  • Venerdì 28 giugno 2024 – Dalle 17.00 alle 19.00

Per le modalità di iscrizione al corso seguire il LINK.

I miei corsi per Tecnica della Scuola: Creare un Kit Robotico Educativo a Basso Costo 5′ ed.

I docenti di tutte le materie possono creare robot educativi a basso costo, senza farsi intimorire dalle innovazioni tecnologiche. Questo metodo promuove un apprendimento pratico, stimola la creatività e rende le lezioni più interattive e coinvolgenti.

Nell’ambito didattico, l’uso della tecnologia è ormai comune e parte integrante del paradigma educativo contemporaneo. La tecnologia non deve essere vista solo come un ausilio tecnico, ma come un elemento strategico della didattica.

In altre parole, la tecnologia non deve limitarsi a supportare l’insegnamento, ma può anche costituire una strategia globale di lavoro. Esempi di questo approccio includono l’insegnamento programmato, l’apprendimento automatizzato e la didattica a distanza. La tecnologia può diventare il soggetto stesso della didattica, come avviene con la robotica. In questa prospettiva, la robotica apre nuove opportunità educative.

Il corso si articola in 3 moduli e guiderà i partecipanti nella costruzione di un robot partendo da zero.

  1. Il primo modulo introduce l’uso di BBC micro:bit e la programmazione con Blocks Editor, uno strumento grafico che facilita l’uso della scheda elettronica che controllerà il robot.
  2. Il secondo modulo riguarda la modellazione 3D con TinkerCAD, che permetterà di stampare in 3D le proprie creazioni o di generare i progetti necessari per realizzare i robot utilizzando compensato o cartone.
  3. Il terzo modulo combina le competenze acquisite, consentendo la costruzione e il controllo del proprio robot didattico.

Saranno svolti 3 incontri in webinar di 2 ore ciascuno, per un totale di 6 ore

  • Giovedì 23 maggio 2024 – Dalle 17.00 alle 19.00
  • Lunedì 27 maggio 2024 – Dalle 17.00 alle 19.00
  • Giovedì 30 maggio 2024 – Dalle 17.00 alle 19.00

Per maggiori informazioni su contenuti e modalità di iscrizione seguire il link.

Guida all’uso di millis() – Lezione 1

Credo che una delle problematiche più ostiche da gestire soprattutto per i neofiti è l’utilizzo degli intervalli di tempo in cui eseguire operazioni con Arduino, mi riferisco all’uso e all’abuso improprio del delay(). Infatti gli studenti scoprono che, sebbene la funzione delay() sia facile da usare, ha degli effetti collaterali importanti; il principale è che ferma l’esecuzione dello sketch Arduino fino a quando non è trascorso il periodo di delay. Quando ciò accade, di solito chi spiega indirizza lo studente sull’esempio di defaut sulla temporizzazione non bloccante che troviamo nell’IDE di Arduino: BlinkWithoutDelay.

Molto spesso però questo confonde ancora di più le idee perché in realtà non si vuole solo far lampeggiare un LED ma si vogliono eseguire più operazioni contemporaneamente, quindi è bene comprendere a fondo il principio di funzionamento del BlinkWithoutDelay prima di poterlo applicare alla propria situazione.

Ho pensato quindi di realizzare qualche post tematico sull’uso di millis(), prendendo spunto dalle spiegazioni che realizzo per gli studenti.

Per usare millis() per la temporizzazione è necessario registrare il momento in cui un’azione si è verificata (ad esempio accensione di un LED ritardata alla pressione di un pulsante) affinché possiate iniziare a contare il tempo trascorso da tale evento, dovrete quindi controllare ad intervalli regolari se il periodo richiesto è trascorso.
Se tale intervallo di tempo non è trascorso allora il vostro programma potrà fare altro fino al prossimo controllo.

Nei programmi che seguono userò i commenti all’interno dello sketch per spiegare l’utilizzo delle varie parti del programma.

Ma cos’è millis()?

La funzione millis() restituisce il numero di millisecondi trascorsi dall’avvio del programma corrente su una scheda Arduino. Questo valore è restituito come un numero di tipo unsigned long.

Come Funziona

  • Incremento Automatico: il conteggio inizia automaticamente quando il microcontrollore sulla scheda Arduino viene alimentato o resettato. Il conteggio continua ad aumentare fino a che la scheda rimane alimentata.
  • Overflow: poiché millis() utilizza una variabile di tipo unsigned long, che ha una dimensione di 32 bit su Arduino, il valore massimo che può raggiungere è 4,294,967,295, dopo aver raggiunto questo valore, si andrà in overflow (ovvero Arduino non è in grado di memorizzare un numero più grande) e il valore restituito da millis() ripartirà da zero. Questo avviene dopo circa 49 giorni e 17 ore dall’ultimo reset della scheda.

Utilizzi di millis()

Di seguito una lista non esaustiva di alcuni utilizzi della funzione millis():

  • Temporizzazione non bloccante: a differenza di delay(), che ferma l’esecuzione del programma per un periodo specificato, millis() può essere utilizzato per realizzare pause o attese senza bloccare altre operazioni. Questo è particolarmente utile in applicazioni multitasking dove altre attività devono continuare ad essere eseguite.
  • Debounce: viene spesso usata per implementare il debounce di pulsanti o switch, riducendo gli effetti dei rimbalzi meccanici che possono causare letture multiple per una singola pressione.
  • Esecuzione di azioni a intervalli regolari: può essere utilizzata per eseguire specifiche azioni a intervalli regolari, come leggere sensori, aggiornare display, o inviare dati.

Pratica di utilizzo

Per utilizzare millis() per la temporizzazione, il vostro sketch deve conoscere il valore attuale del tempo (valore restituito da millis()) e questa rilevazione può essere fatto quando volete, in più punti dello sketch ovviamente dovrebbe essere fatta quando serve, ma vediamo cosa vuol dire.

Tipicamente il valore di millis() conviene registrarlo in una variabile ad inizio loop() o all’interno del setup() in questo modo:

millisCorrente = millis();

Regola di utilizzo:

  1. La variabile millisCorrente deve essere stata precedentemente dichiarata.
  2. Deve essere di tipo unsigned long perché millis() restituisce un intero long senza segno.

Regole generali che valgono per tutti i programmi che realizzerete, lo scrivo perchè puntualmente durante le correzioni qualcuno dimentica questa due regolette:

  1. Il nome della variabile, così come accade per tutte le variabili dovrebbe essere autoesplicativa, quindi il suo nome deve dare informazioni: “a cosa serve”
  2. Inoltre è buona regola utilizzare la notazione Camel Case per gestire nomi di variabili composte da più parole, ciò vale anche per le funzioni.

Come spesso accade durante le attività di laboratorio, lascio come semplicissimo esercizio per lo studente il desumere i componenti utilizzati e connessioni dagli sketch di esempio, quindi fate riferimento a quanto indicato in ogni singolo programma, si tratterà semplicemente di connettere dei LED con in serie un resistore da 220 Ohm. Per quanto riguarda l’ultimo esempio fate riferimento al link indicato che rimanda ad un altro post su questo sito.

Siete ora pronti per seguire le spiegazioni successive.

Continua a leggere

Lezione 2 – Corso di Elettronica Creativa con Arduino Sensor Kit

Come ormai tutti sappiamo un LED si presenta come un piccolo componente elettronico che emette luce quando attraversato da corrente elettrica. I LED sono molto usati nella vita di tutti i giorni in vari dispositivi come lampadine, schermi di telefoni e computer, telecomandi, e molto altro.

Immaginate il LED come una lampadina molto piccola, ma molto più efficiente ed ecologica. A differenza delle lampadine tradizionali, che producono luce riscaldando un filamento metallico, i LED producono luce attraverso un processo chiamato “elettroluminescenza”. Questo processo avviene quando la corrente elettrica passa attraverso un semiconduttore (il materiale di cui è costituito il LED) e lo stimola a emettere luce.

Un po’ di storia

Nel corso del primo Novecento, l’ingegnere inglese Henry Joseph Round fece una scoperta rivoluzionaria: l’elettroluminescenza, ovvero la proprietà di certi materiali di emettere luce quando attraversati da corrente elettrica. Da questa scoperta, nascono i LED acronimo di Light Emitting Diode (Diodo a Emissione di Luce), diodi specializzati nell’utilizzare tale fenomeno. Il primo LED, operante nell’infrarosso, venne introdotto nel 1961 e ancora oggi è ampiamente utilizzato in dispositivi come telecomandi e fotocellule.

L’anno successivo alla creazione del primo LED infrarosso, nel 1962, Nick Holonyak Jr. fece un ulteriore passo avanti sviluppando il primo LED rosso, capace di emettere luce visibile direttamente all’occhio umano. Gli studi su questi nuovi diodi proseguirono, focalizzandosi sulle varie applicazioni pratiche, come nell’ambito dei laser, e sull’esplorazione dei materiali necessari per produrre diverse tonalità di luce, combinando più fonti luminose per ottenere una vasta gamma di colori.

Durante gli anni cruciali della ricerca sui LED, un importante contributo venne dall’ingegnere americano M. George Craford, ex studente di Holonyak all’Università dell’Illinois. Nel 1972, Craford realizzò un significativo avanzamento creando i primi LED gialli che furono commercializzati dalla Monsanto, l’azienda per cui lavorava. Dedicate interamente al settore dei LED, le ricerche di Craford furono fondamentali per la loro prima larga diffusione, come dimostra il loro impiego in applicazioni quali semafori e segnalazioni luminose stradali.

Vantaggi nell’uso dei diodi LED

  • Consumano meno energia: sono molto più efficienti delle lampadine tradizionali, il che significa che usano meno elettricità per produrre la stessa quantità di luce.
  • Durano più a lungo: possono funzionare per migliaia di ore prima di dover essere sostituiti.
  • Sono robusti: non contengono filamenti o parti fragili che si possono rompere facilmente.
  • Offrono diverse colorazioni: i LED possono emettere luce di vari colori senza l’uso di filtri colorati.

Un esempio pratico molto semplice che potete realizzare a scuola è collegare un LED a una batteria con un piccolo resistore (di seguito sono fornite le indicazioni per il calcolo del valore del resistore) per limitare la corrente e proteggere il LED: noterete come si illumina, dimostrando in modo semplice ed efficace come funziona.

Struttura Fisica del LED

Un LED è composto principalmente da un chip di materiale semiconduttore in cui sono presenti impurità per creare una giunzione P-N. La giunzione è dove avviene l’elettroluminescenza (emissione di luce). Il chip è incapsulato in un guscio di plastica o vetro, che può essere modellato per focalizzare o diffondere la luce. I LED hanno due terminali: un anodo (+) e un catodo (-). La corrente elettrica fluisce dall’anodo al catodo, e questo flusso di corrente permette al LED di emettere luce.

Modalità di Polarizzazione

Per funzionare correttamente, un LED deve essere polarizzato in modo diretto, il che significa che l’anodo deve essere collegato al polo positivo della fonte di alimentazione e il catodo al polo negativo. Se il LED è collegato al contrario (polarizzazione inversa), non si accenderà perché la corrente non può fluire attraverso di esso nel modo giusto.

Calcolo della Resistenza Serie

Per proteggere il LED da correnti eccessive, si usa una resistore connesso in serie. Il calcolo di questa della resistenza (R) dipende dalla tensione di alimentazione (VS), dalla tensione del LED (VI​) e dalla corrente desiderata attraverso il LED (ILED​):

Dove:

  • VS​ è la tensione di alimentazione
  • VLED​ è la tensione di funzionamento del LED, tipicamente tra 1.8V e 3.3V a seconda del colore
  • ILED​ è la corrente di funzionamento desiderata per il LED, solitamente intorno a 20mA per la maggior parte dei LED, ma può variare.

Corrente di Funzionamento e Colore

La corrente di funzionamento del LED influisce sulla luminosità, ma anche il colore del LED ha un ruolo nella determinazione della tensione di funzionamento. Ecco alcune tensioni di funzionamento approssimative in base al colore:

  • Rosso: 1.8V – 2.2V
  • Verde: 2.0V – 3.0V
  • Blu, Bianco, UV: 3.0V – 3.5V

Questi valori possono variare a seconda del tipo specifico di LED. Per un funzionamento sicuro, è essenziale controllare le specifiche del produttore del LED che si sta utilizzando.

Ricordate, utilizzare un resistore di valore adeguato è cruciale per prevenire il danneggiamento del LED a causa di una corrente troppo elevata. Il calcolo della resistenza in serie aiuta a garantire che il LED riceva la corrente corretta per il suo ottimale funzionamento e durata.

Di seguito un esempio di collegamenti per controllare l’accensione di un diodo LED rosso:

Materiali Necessari

  • 1 LED rosso
  • 1 resistenza (calcoleremo il valore)
  • 1 batteria (per esempio, una batteria da 9V)
  •  Cavi di collegamento

Calcolo della Resistenza

Prima di collegare il circuito, dobbiamo calcolare il valore della resistenza necessaria per proteggere il LED. Supponendo che il LED rosso abbia una tensione di funzionamento di circa 2V e che la corrente ideale per il LED sia di 20mA (0,02A), usiamo una batteria da 9V come alimentazione. Il calcolo della resistenza (R) si basa sulla formula precedentemente indicata dove:

  • Vs, tensione di alimentazione vale 9V
  • VLED​, tensione di funzionamento del LED vale 2V per un LED rosso
  • ILED, corrente di funzionamento desiderata per il LED, vale 0,02A (2 mA)

Sostituendo i valori nella formula otteniamo:

Il valore 350 Ohm è quello calcolato, bisognerà quindi ora scegliere il valore commerciale prossimo al valore calcolato, si potrà scegliere quindi tra 330 Ohm o 360 Ohm.

Collegamento del Circuito

  1. Collega un’estremità della resistenza a uno dei terminali della batteria (il polo positivo, se state usando un portabatterie con i cavi già attaccati).
  2. Collega l’altra estremità della resistenza al terminale più lungo (anodo) del LED. L’anodo è il lato positivo del LED.
  3. Collega il terminale più corto (catodo) del LED al polo negativo della batteria. Puoi fare questo direttamente o usando un cavo.
  4. Una volta completato il collegamento, il LED dovrebbe accendersi. Se non si accende, verifica i collegamenti e assicurati che la batteria sia carica.

Ricordate come detto sopra, è importante non invertire la polarità del LED, perché non si illuminerà se collegato al contrario.

Nel modulo Grove LED incluso nell’Arduino Sensor Kit, la resistenza di limitazione della corrente è già integrata sul PCB (circuito stampato), quindi, non c’è bisogno di preoccuparsi di aggiungere manualmente una resistenza esterna quando lo usate; questa parte del lavoro è già stata fatta per voi. Questo tipo di collegamento verrà approfondito in un corso successivo.

Ricordate, state partecipando a un corso introduttivo il cui scopo è guidarvi, passo dopo passo, nel mondo della programmazione e nella realizzazione di sistemi elettronici. Questo approccio semplificato vi permette di concentrarvi sull’apprendimento delle basi, evitando inizialmente di soffermarvi troppo sui dettagli tecnici.

Utilizzare l’Arduino Sensor Kit

Le funzioni che verranno usate nei programmi che seguono saranno le seguenti:

pinMode()
La funzione pinMode() in Arduino è essenziale per impostare la modalità di funzionamento di uno specifico pin della scheda Arduino. Questa funzione permette di definire se un pin deve comportarsi come un ingresso (input) ovvero riceve un segnale in ingresso o come un’uscita (output) ovvero fornisce un segnale in uscita.

digitalWrite()
La funzione digitalWrite() in Arduino è utilizzata per scrivere un valore HIGH (1 logico corrispondente a 5V) o LOW (0 logico, corrispondente a 0V) su un pin configurato come OUTPUT. Questo permette di controllare dispositivi elettronici come LED, motori e altri componenti elettronici.

delay()
La funzione delay() in Arduino è utilizzata per introdurre un ritardo nel programma per un determinato numero di millisecondi. Durante questo ritardo, il programma si ferma e non esegue altre istruzioni. Questo può essere utile per controllare il timing di varie operazioni, come il lampeggio di un LED, il ritardo tra due azioni. Vedremo in lezioni successive come utilizzare un’altra tecnica per la gestione dei ritardi che permette di non bloccare l’intera esecuzione del programma.

Sketch 1

// Prof. Maffucci Michele
// Blink del LED connesso al pin digitale 6

// #define permette di assegnare un none ad un valore costante prima che
// il programma venga compilato.
// Le costanti così definite non occupano spazio nella memoria del mirocontrollore

#define LED 6

void setup() {
// inserire quì il codice che deve essere eseguito una sola volta
// dal momento che colleghi all'alimentazione Arduino
pinMode(LED, OUTPUT); // con pinMode indichiamo come verrà usato il pin, in questo caso come output
}

void loop() {
// Inseriamo nel loop il codice che vogliamo
// venga ripetuto continuamente

digitalWrite(LED, HIGH); // Imposta ad HIGH (5V) la tensione sull'anodo del LED
delay(1000); // Attesa di 1000 millisecondi
digitalWrite(LED, LOW); // Imposta ad LOW (0V) la tensione sull'anodo del LED
delay(1000); // Attesa di 1000 millisecondi
}

Sketch 2

Continua a leggere

BBC micro:bit – MakeCode Multi-Editor

Durante i miei corsi online mi trovo spesso nella condizione di dover simulare la  trasmissione dati tra due microbit, ad esempio il primo dedicato alla rilevazione della temperatura ed il secondo dedicato alla visualizzazione della temperatura su display, o ancora programmare e gestire istantaneamente due micro:bit reali collegati al medesimo PC.

Per eseguire questa operazione ci viene in aiuto la funzione Multi Editor del MakeCode editor che offre un modo utilissimo per gestire simultaneamente la programmazione di dispositivi diversi. Questa caratteristica permette di avere due finestre di editor separate, una per il trasmettitore e una per il ricevitore, consentendo agli utenti di creare, modificare e testare due programmi contemporaneamente​.

Questa funzionalità si rivela particolarmente utile per simulare l’esperienza reale di gestione di programmi radio sul micro:bit, facilitando lo sviluppo e il testing di comunicazioni wireless tra dispositivi, pertanto questa funzionalità risulta utilissima in  ambito didattico.

Le due aree di programmazione possono esser ridimensionate muovendo orizzontalmente la linea di separazione, oppure possiamo mantenere modalità diverse di vista, ad esempio di codice su un micro:bit e  full screen del micro:bit sull’altra metà.

Nell’esempio mostrato di seguito un semplicissimo programma, realizzato durante uno dei miei corsi, sulla sinistra è presente un micro:bit (1) che trasmette in modo continuo la temperatura rilevata, sulla destra un secondo micro:bit (2) su cui premendo il pulsante A mostra la temperatura rilevata dal micro:bit (1). Questa operazione potrà essere fatta sia in modalità virtuale che reale.

Modalità virtuale:

Modalità reale: entrambi i microbit sono connessi allo stesso computer, vengono programmati ed usati insieme:

Quando farete il pairing tra Browser e micro:bit, vedrete che nel pannello di scelta del dispositivo potrete selezionare più micro:bit, accoppiatene uno alla volta per capire in quale area di programmazione agirete.

Se non riuscite ad effettuare il pairing, scollegate i dispositivi, ricaricate la pagina, riconnettete i micro:bit e riprovate ad effettuare il pairing.

Per provare la versione Multi-edit dell’editor seguite il link.

In alternativa se volete utilizzare la versione Multi-edit utilizzando tutti i file che avete nel vostro account online o nella cache di navigazione seguite il link.

Buon Coding a tutti 🙂