Archivi tag: programmazione

Errori comuni nell’uso di Arduino – inizializzazione di più variabili

La tentazione di risparmiare linee di codice è sempre in agguato e tentare di inizializzare più variabili su una sola riga è forte, però alcune volte ciò che intendiamo fare non corrisponde a ciò che correttamente intende il compilatore.

Con la scrittura:

int x, y, z = 67;

non viene assegnato il valore 67 ad ogni singola variabile, ma solamente la variabile z viene inizializzata a 67.

L’errore quindi non risiede nella scrittura, il compilatore non restituirà errore, ma nel modo in cui il programmatore intende l’assegnamento credendo che tutte le variabili vengano inizializzate a 67.

La scrittura

int x = 67, y = 67, z = 67;

permette l’assegnamento del valore 67 ad ogni singola variabile. Si ricordi di separare ogni assegnamento da una virgola, ciò accade solo e soltanto se si indicano tipo e assegnamento su stessa linea.

Per l’assegnamento di valori diversi scriveremo:

int x = 99, y = 3, z = 67;

Io in genere preferisco una scrittura di questo tipo:

int x = 99;
int y = 3;
int z = 67;

che permette di visualizzare meglio le variabili utilizzate, non favorisce fraintendimenti nell’assegnamento e permette inoltre di scrivere chiaramente un commento a lato di ogni assegnamento.

Esercizio (semplice semplice 🙂 ) per i miei studenti:

Realizzare uno sketch che dimostra quanto esposto in questo post.

Buon Coding 🙂

Errori comuni nell’uso di Arduino – fare più azioni nell’if senza l’uso delle parentesi graffe

Continua la segnalazione degli errori che spesso vengono commessi durante le prime attività di programmazione con Arduino.
La sequenza di istruzioni da eseguire se risulta vera la condizione dell’istruzione if  (il corpo della if) deve essere racchiusa tra parentesi graffe. L’errore è immaginare che l’indentazione sia sufficiente per indicarne l’appartenenza al corpo della if, modalità valida in altri linguaggi di programmazione come in Python, ma non in C:

Uso non corretto

if (temperatura > 25)
  digitalWrite (normaleTemp, LOW);
  digitalWrite (allarmeTemp, HIGH);

Uso corretto

if (temperatura > 25)
{
  digitalWrite (normaleTemp, LOW);
  digitalWrite (allarmeTemp, HIGH);
} // fine del controllo temperatura > 25

Buon lavoro 🙂

Gestire con micro:bit un display 1602 I2C

Ho realizzato questo tutorial come risposta ad un quesito che mi è stato posto da un’amica collega sull’utilizzo del display 1602 I2C comandato da micro:bit.
Per quanto riguarda la descrizione tecnica del display vi rimando al post su questo sito:

Utilizzo dell’LCD 16×2 Hitachi HD44780 1602 con modulo I2C PCF8574T

Per un utilizzo con micro:bit è sufficiente conoscere il tipo esatto di integrato I2C che gestisce la comunicazione tra display e micro:bit nella modalità indicata da questo tutorial.

Aprite un nuovo progetto dall’ambiente grafico di programmazione di micro:bit.
Aggiungiamo l’estensione che consente la gestione di un display 16×2 I2C, per far ciò selezionate “+Extensions”:

nel campo di ricerca inserite: I2C

dovreste ottenere il seguente risultato:

Selezionate l’estensione indicata nell’immagine:

All’interno dei blocchi disponibili ritroverete quelli che fanno riferimento al display:

Ogni dispositivo I2C dispone di un indirizzo, un codice a cui bisogna far riferimento in fase di programmazione e per quanto riguarda la scheda di comunicazione I2C disposta sul retro del display troverete due tipi di dispositivi con indirizzo differenti l’uno dall’altro. La differenza consiste nel tipo di circuito integrato che gestisce la comunicazione I2C:

  • PCF8574 > indirizzo 39
  • PCF8574A > indirizzo 63

L’indirizzo dovrà essere inserito all’interno di un apposito blocco come indicato di seguito.

Per sapere quale indirizzo usare potete leggere la sigla dell’integrato, come indicato nell’immagine che segue:

nel mio caso l’indirizzo da inserire sarà il 39.

L’altro metodo consiste nel sostituire, nel codice che segue, gli indirizzi sopra indicati in modo da individuare il numero corretto che permette la visualizzazione del testo sul  display.

Per il collegamento del circuito avete necessità di alimentare il display a 5V, in commercio esistono degli edge connector (connettore per collegare micro:bit alla breadboard) che prelevano dalla USB i 5 volt, nel mio caso questa funzionalità non è fornita, l’unica tensione disponibile è di 3,3V non sufficienti per alimentare il display.

Se anche voi siete nelle medesime condizioni allora alimenterete via USB il micro:bit mentre il display dovrà essere alimentato esternamente mediante una tensione di 5V. Se agite in questo modo ricordate che la terra (GND) dovrà essere la medesima (collegate insieme) per entrambi i dispositivi. Fate riferimento allo schema di seguito indicato:

Sul micro:bit il pin 20 corrisponde all’SDA e il pin 19 all’SCL, pin che avranno una corrispondenza con il display. Per le mie sperimentazioni dispongo di un cavo USB modificato per poter inserire su breadboard la tensione di 5V proveniente dalla USB del computer.

Realizzeremo un semplice programma che consente di visualizzare su due righe il testo:

BBC micro:bit
Italy timer

dove timer è il numero di secondi trascorsi dall’avvio del programma.

L’inserimento della prima istruzione provocherà la visualizzazione del display I2C:

L’istruzione “LCD initialize with Address 39” assegna al display l’indirizzo 39

L’istruzione “show string” mostrerà sul display il testo incluso nel primo campo: “BBC micro:bit” che verrà scritto a partire dalla colonna 0 e riga 0 (in prima riga).

La seconda “show string” mostrerà sul display il testo “Italy” alla colonna 0 e riga 1 (in seconda riga):

Definiamo una nuova variabile che andremo successivamente ad incrementare:

assegnamo alla variabile il nome: contatore

All’interno della funzione “forever” inserire l’istruzione “change” per incrementare di una unità la variabile “contatore”.

Con l’istruzione “show number” visualizziamo sul display un numero, inserendo nel primo campo la variabile “contatore” il numero visualizzato sarà quello memorizzato nella variabile contatore:

La visualizzazione del numero contenuto in “contatore” avverrà in colonna 6 riga 1:

Aggiungendo una pausa di 1 secondo l’incremento del numero che appare sul display sarà di 1 secondo:

Questo il risultato:

Buon Coding a tutti 🙂

Errori comuni nell’uso di Arduino – uso non corretto della digitalWrite

Errore: considerare la “,” come separatore di istruzioni e non come separatore di valori. In C una scrittura del tipo: (a, b, c) è una sequenza di espressioni separate da virgola che valuta l’ultima espressione c, mentre {a; b; c;} è una sequenza di istruzioni che non valuta nulla.
La virgola si inserisce solamente tra due espressioni a differenza del punto e virgola che si inserisce alla fine di un’istruzione (ma non di un’istruzione di blocco come: if, for, while, do while).

Esempio non corretto

digitalWrite ((5, 6, 7), HIGH);

Esempio corretto

digitalWrite (5, HIGH);
digitalWrite (6, HIGH);
digitalWrite (7, HIGH);

O ancora meglio usando un ciclo for:

for (byte i = 5; i<= 7; i++)
  digitalWrite(i, HIGH);

Domanda che in genere faccio ai ragazzi:
“perché ho dichiarato i come byte e non come int?”

La risposta la trovate in: Appunti di programmazione su Arduino: tipi di dati in cui viene evidenziato che la dimensione del tipo byte è di 8 bit (1 byte) e rappresenta interi (senza decimali) ed hanno un range da 0 a 255, mentre gli int sono dei tipi di dato usati per memorizzare numeri senza decimali e memorizzano valori a 16 bit (2 byte) nel range da 32.767 a -32.768, quindi usando il tipo byte occupiamo meno spazio in memoria.

Buon Coding a tutti 🙂

Programmare Arduino con Platform IO

L’IDE di programmazione Arduino è notoriamente semplice da utilizzare, possiede le funzionalità minime per poter scrivere, compilare e caricare sulla scheda il codice prodotto, però le operazioni messe a disposizione sono minime e solamente nella versione che è stata presentata durante la scorsa MakerFaire di Roma, di cui avevo dato notizia in un precedente post, sono state aggiunte una serie di funzionalità di editing che tendono a farlo diventare un editor di programmazione professionale.
Attualmente il nuovo IDE è ancora in versione Beta quindi si dovrà attendere qualche tempo.
Esistono molti ambienti di sviluppo professionali che aggiungono modalità di autocompletamento, facile accesso ad ogni parte del codice, numerose scorciatoie da tastiera. Tra gli abbienti più diffusi che farò sicuramente utilizzare ai miei studenti vi è Visual Studio Code di Microsoft che con l’estensione Platform IO, sviluppato in Python, fornisce un set di strumenti di nuova generazione per lo sviluppo di sistemi embedded in C / C ++. L’estensione è gratuita ed Open Source.
Le schede supportate sono moltissime, ad oggi sono 769, tra cui ESP32, ESP8266, schede della famiglia ST Nucleo e tutte le schede della famiglia Arduino.
Platform IO può essere eseguito su Windows, Mac e Linux e su piccoli computer basati su architettura ARM come: Raspberry Pi, BeagleBone, CubieBoard, Samsung ARTIK, ecc. Platform IO viene fornito con numerosi esempi e librerie.

Vantaggi

  • completamento automatico del codice C / C ++
  • Smart Code Linter che non è presente nell’IDE Arduino.
  • Supporto del tema scuro e chiaro
  • Smart Code Navigations
  • Formattazione del Codice
  • Cross-platform build system indipendente dal sistema operativo
  • File Explorer che aiuta organizzare i file.
  • Comodo gestore delle librerie, Serial Monitor evoluto e molto altro.

L’uso di PlatformIO è molto semplice e richiede pochi passaggi per l’installazione.

Installazione

Dal sito di riferimento: https://platformio.org/

far click su “install PlatformIO Now”

Sarete reindirizzati sulla pagina di riferimento di PlatfprmIO IDE

Prelevare Visual Studio Code facendo click su “Install for VSCode”, sarete reindirizzati sulla pagina di riferimento. Selezionate il sistema operativo del vostro computer e fate click su Download:

Durante il download sarete reindirizzati su una pagina che mostra le caratteristiche principali di VSCCode

Non sono necessarie installazioni, è sufficiente un doppio click per avviare l’applicazione:

Selezionate l’icona Extensions (5’ icona)

Inserite nel campo di ricerca Platform IO e troverete immediatamente l’estensione, come potete immediatamente notare VSCode può essere utilizzato per programmare anche in altri linguaggi: C/C++, C#, Python, PHP, Go, JavaScript, TypeScript, Node.js e molti altri.

Click su Install per installare l’estensione.

La fase di installazione durerà qualche minuto ed in questa fase non chiudete la finestra.

Sulla destra della finestra apparirà un messaggio che vi avverte che l’installazione è andata a buon fine, fate click su “Reload Now”

Quando l’installazione è terminata vedrete la seguente interfaccia:

Vi consiglio di riavviare VS Code Editor dopo l’installazione di Platform IO.

Ciò completa la fase di installazione di Platform IO ed è pronto per essere usato.

Realizziamo il primo Sketch ed inizieremo con il solito Blink che scriveremo all’interno di Platform IO.

Fate click su “+ New Project”

Apparirà una finestra in cui dovrete inserire il nome del programma, nel mio caso ho scelto: “blink-PIO”, selezionate poi il tipo di scheda, noterete che mentre scrivete il nome della scheda vi verrà fornito il suggerimento per il completamento, selezionate Arduino Uno, il campo “Framework” viene completato automaticamente:

Il progetto necessita di qualche secondo, giusto il tempo per creare risorse e dipendenze file.

Al termine apparirà la pagina di riferimento del progetto:

Nella struttura ad albero che compare sulla sinistra della finestra selezionate: src e successivamente main.cpp sulla destra vedrete un sketch pronto con le funzioni setup() e loop() vuoti:

Si noti che PlatformIO non ha l’accesso predefinito alle librerie Arduino, quindi ogni volta che si scrive il codice per Arduino bisogna includere sempre all’inizio dello sketch la libreria Arduino.h

#include<Arduino.h>

Incominciate a scrivere il codice, noterete immediatamente la comparsa del menù di autocompletamento:

Nella parte sinistra della finestra, nella sezione “OUTLINE” potrete spostarvi immediatamente tra le funzioni presenti nel codice:

Procediamo ora alla compilazione del codice: fate click su “PlatformIO: Build” al fondo della finestra (fascia azzurra)

Nella parte bassa della finestra trovate le funzioni: Build, Upload, Upload to Remote Device, Clean, Test, Run Task, Serial Monitor, New Terminal inoltre avete anche icone che vi mostrano: warning ed errori.

Procediamo ora alla compilazione e al trasferimento sulla scheda. Collegate la vostra scheda al computer, il riconoscimento della scheda è automatico:

Click su “PlatformIO: Upload” per trasferire il programma sulla scheda.

Se tutto è stato eseguito correttamente il LED L sulla scheda incomincerà a lampeggiare.

Buon Coding a tutti 🙂